Resposta :
[tex]r: y=\frac{1}{3}x+2[/tex] ⇒ [tex]m_{r}=\frac{1}{3}[/tex]
[tex]s:y=-\frac{1}{2}x+6[/tex] ⇒ [tex]m_{s}=-\frac{1}{2}[/tex]
[tex]tg\alpha =|\frac{m_{s}-m_{r}}{1+m_{s}.m_{r}}|\\\\tg\alpha =|\frac{(-\frac{1}{2})-(\frac{1}{3})}{1+(-\frac{1}{2}).(\frac{1}{3})}|\\\\tg\alpha =|\frac{-\frac{1}{2}-\frac{1}{3}}{1-\frac{1}{6}}|\\\\tg\alpha =|\frac{-\frac{5}{6}}{\frac{5}{6}}|\\\\tg\alpha =|-1|\\\\tg\alpha =1\\\\\alpha =45^{0}[/tex]