Resposta :
✔️ Conhecendo as práticas matemáticas acerca da equação de segundo grau, temos que o coeficiente a sempre tem que ser diferente de: c) 0.
Equação de 2° grau
É a equação de forma geral [tex]\large\displaystyle\text{$\mathrm{ax^2 + bx + c = 0}$}[/tex], que é formada pelos coeficientes a, b e c, sendo que o grau máximo do monômio é 2. Uma característica deste tipo de equação é que o coeficiente a é sempre diferente de 0. Podemos considerá-la até como a mais importante.
Mas por quê?
Vamos lá. Sabemos que o que determina o grau de uma equação é o valor máximo do expoente do monômio. Logo, o coeficiente a é indispensável, pois, sem ele, não teria outro monômio com expoente 2, portanto a operação acabaria tornando-se uma equação de 1° grau e não uma equação de 2° grau.
Resolução do exercício
Colocando em prática tudo o que revisamos acima, podemos classificar as alternativas de acordo com a exigência do enunciado:
a) 2. Não, pois o coeficiente a pode ser este valor sem nenhum problema.
b) 1. Não, pois o coeficiente a pode ser este valor sem nenhum problema.
c) 0. Sim, pois o coeficiente a é indispensável em uma equação de 2° grau.
d) -1. Não, pois o coeficiente a pode ser este valor sem nenhum problema.
e) -2. Não, pois o coeficiente a pode ser este valor sem nenhum problema.
Saiba mais em
• brainly.com.br/tarefa/9847148
• brainly.com.br/tarefa/9769475
• brainly.com.br/tarefa/21844957
• brainly.com.br/tarefa/49898077
• brainly.com.br/tarefa/46854665
![Ver imagem GABRIELTALLES00](https://pt-static.z-dn.net/files/d35/56431f5a9b6fe5414a554f0e4011bf50.jpg)