Resposta :
Resposta: 120
Explicação passo a passo:
A6,3
6!/(6 - 3)!
(6*5*4*3!)/3!
= 120
Teremos 120 diferentes números de 3 dígitos.
Teremos que realizar um arranjo simples, poderemos fazer isso de duas formas. A primeira é utilizando essa fórmula:
[tex]{A}^{p}_{n} = \frac{n!}{(n - p)!}[/tex]
O n vai ser o número total de lentos, o o vai ser a quantidade de cada grupo. Então o n seria 6, pois temos 6 elementos, o o seria 3. Então queremos a permutação de 6 elementos 3 a 3. O "!" significa fatorial.
Vamos substituir na fórmula:
[tex]{A}^{p}_{n} = \frac{6!}{(6 - 3)!} \\ \\ {A}^{p}_{n} = \frac{6 \times 5 \times 4 \times \not3!}{ \not3!} \\ \\ {A}^{p}_{n} = 5 \times 5 \times 4 = \red{\boxed{120}}[/tex]
Essa é a forma utilizando a fórmula do arranjo simples. Mas podemos fazer direto, a primeira coisa que teremos que ter em mente é que o primeiro digito possui 6 possibilidades, quando vamos para o segundo temos apenas 6, já que usamos um para o primeiro e não podemos repetir. O terceiro digito temos 4 possibilidades, pois usamos uma pro primeiro, uma pro segundo e não podemos usar novamente, sendo assim temos:
[tex]6 \times 5 \times 4 = \red{ \boxed{120}}[/tex]
Teremos 120 números possíveis.
Continue aprendendo:
https://brainly.com.br/tarefa/25142038
https://brainly.com.br/tarefa/20558502
![Ver imagem ALLAN0505](https://pt-static.z-dn.net/files/d29/11324ad6f56699bbc913204d08e21cf6.jpg)