Resposta :
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{Q(t) = Q_0.e^{-rt}}[/tex]
[tex]\mathsf{1.500 = 2.000.e^{-0.02t}}[/tex]
[tex]\mathsf{e^{-0.02t} = \dfrac{1.500}{2.000}}[/tex]
[tex]\mathsf{e^{-0.02t} = \dfrac{3}{4}}[/tex]
[tex]\mathsf{log\:e^{-0.02t} = log\:\dfrac{3}{4}}[/tex]
[tex]\mathsf{-0,02t\:log\:e = log\:3 - 2\:log\:2}[/tex]
[tex]\mathsf{-0,02t = \dfrac{log\:3 - 2\:log\:2}{log\:e}}[/tex]
[tex]\mathsf{-0,02t = \dfrac{0,47 - 0,6}{0,43}}[/tex]
[tex]\mathsf{-0,02t = -0,30}[/tex]
[tex]\boxed{\boxed{\mathsf{t \approx 15}}}\leftarrow\textsf{anos}[/tex]