Resposta :
Resposta:
Um total de 610 pessoas participaram do levantamento feito pelo supermercado.
Explicação passo a passo:
Montando o diagrama de Venn para a situação descrita, temos:
- 20 pessoas consumem os três produtos;
- 60 pessoas consomem os produtos M1 e M2:
Se desses 20, consomem os 3, logo [tex]60-20=40[/tex] consomem apenas os produtos M1 e M2.
- 70 pessoas consomem os produtos M1 e M3:
Se desses, 20 consomem os 3, logo [tex]70-20=50[/tex] consomem apenas os produtos M1 e M3.
- 50 pessoas consomem os produtos M2 e M3:
Se desses, 20 consomem os 3, logo [tex]50-20=30[/tex] consomem apenas os produtos M2 e M3.
- 210 pessoas consomem o produto M1:
Sabendo que [tex]50+40+20=110[/tex] consomem o produto M1, logo [tex]210-110=100[/tex] consomem apenas o produto M1.
- 210 pessoas consomem o produto M2:
Sabendo que [tex]40+30+20=90[/tex] consomem o produto M2, logo [tex]210-90=120[/tex] consomem apenas o produto M2.
- 250 pessoas consomem o produto M3:
Sabendo que [tex]50+30+20=100[/tex] consomem o produto M3, logo [tex]250-100=150[/tex] consomem apenas o produto M3.
- 100 pessoas não consomem nenhum dos três produtos
Agora somando todos os valores obtidos no diagrama de Venn, temos:
- 20 (todos produtos)
- 40 (apenas M1 e M2)
- 50 (apenas M1 e M3)
- 30 (apenas M2 e M3)
- 100 (apenas M1)
- 120 (apenas M2)
- 150 (apenas M3)
- 100 (nenhum dos três produtos)
Soma: [tex]20+40+50+30+100+120+150+100=610[/tex]
Logo, 610 pessoas participaram do levantamento.
![Ver imagem HANNAHKRBARROS](https://pt-static.z-dn.net/files/d03/16505edc78e18332a885266986b0fcee.png)