Resposta :
[tex]\Large\boxed{\begin{array}{l}\sf cos(x)\exists\iff -1\leqslant cos(x)\leqslant 1\\\sf cos(x)=3-m\\\sf -1\leqslant3-m\leqslant1\iff \begin{cases}\sf 3-m\geqslant-1\\\sf 3-m\leqslant1\end{cases}\\\sf 3-m\geqslant-1\\\sf -m\geqslant-1-3\\\sf -m\geqslant-4\cdot(-1)\\\sf m\leqslant4\\\sf S_1=\{m\in\mathbb{R}/m\leqslant4\}\\\sf 3-m\leqslant1\\\sf -m\leqslant1-3\\\sf -m\leqslant-2\cdot(-1)\\\sf m\geqslant2\\\sf S_2=\{m\in\mathbb{R}/m\geqslant2\}\\\sf S=S_1\cap S_2\end{array}}[/tex]
[tex]\Large\boxed{\begin{array}{l}\sf S=\{m\in\mathbb{R}/2\leqslant m\leqslant4\}\end{array}}[/tex]
![Ver imagem CYBERKIRITO](https://pt-static.z-dn.net/files/d01/fc6015d79821e1639d5b4dc7046579d6.jpg)