Determinado cubo possui volume 8 cm³. Determine a área total,a área lateral e sua diagonal.​

Resposta :

Resposta

área total = 24 cm²

área lateral = 16 cm²

medida da diagonal = d = [tex]\sqrt{12} =2\sqrt{3}[/tex] cm

Detalhes

Se o volume do cubo é 8 cm³ ...

V=l³=8

l³=8

l=[tex]\sqrt[3]{8}[/tex] = 2cm

A área de uma face é 2.2=4cm²

Logo, as 6 faces terão área total = 6*4=24cm²

A área lateral é formada por 4 faces e, portanto, a área lateral vale 4*4=16 cm²

Quanto a diagonal, basta usar o TEOREMA DE PITÁGORAS no triângulo retângulo que tem hipotenusa como diagonal do cubo, um dos catetos na diagonal da face e outro cateto na aresta do cubo.

d² = [tex](2\sqrt{2} )^2[/tex] + 2²

d² = 4*2 + 4

d² = 12

d = [tex]\sqrt{12} =2\sqrt{3}[/tex] cm