Resposta :
Juros compostos
[tex] \sf{m = c(1 + i)^{n} } \\ \\ \sf{7000 = c(1 + 4\%)^{4} } \\ \\ \sf{7000 = c {\left(1 + \frac{4}{100} \right)}^{4} } \\ \\ \sf{7000 = c {\left( 1 + \frac{1}{25} \right)}^{4} } \\ \\ \sf{7000 = c {\left( \frac{25 + 1}{25} \right)}^{4} } \\ \\ \sf{7000 = c {\left( \frac{26}{25} \right)}^{4} } \\ \\ \sf{7000 = c \times \frac{ {26}^{4} }{ {25}^{4} } } \\ \\ \sf{7000 = \frac{ {26}^{4}c }{ {25}^{4} } } \\ \\ \sf{ \frac{7000 \times {25}^{4} }{ {26}^{4} } = c } \\ \\ \sf{c = \frac{7000 \times {25}^{4} }{ {26}^{4} } } \\ \\ \sf{c = \frac{7000 \times 390625}{456976} } \\ \\ \sf{c = \frac{2734375000}{456976} } \\ \\ \boxed{ \sf{c \approx 5983,62 }}[/tex]
Resposta
Item (a)
Att: José Armando