Resolva as integrais a seguir usando o método de integração por partes.
![Resolva As Integrais A Seguir Usando O Método De Integração Por Partes class=](https://pt-static.z-dn.net/files/dcf/22ec23bc106a7f1cdd6ff84222a3bdfe.png)
a)
∫ x * e^(x) dx
u=x ==> du =dx
dv=e^(x) dx ==> ∫dv=∫e^(x) dx ==>v=e^(x)
∫ x * e^(x) dx =x* e^(x)- ∫e^(x) dx
∫ x * e^(x) dx =x* e^(x)- e^(x) + c
b)
∫ x * ln(x) dx
u= ln(x) ==>du= dx/x
dv =x dx ==>∫ dv = ∫ x dv ==> v= x²/2
∫ x * ln(x) dx= (x²/2) * ln(x)- ∫ x²/2 dx/x
∫ x * ln(x) dx= (x²/2) * ln(x)- (1/2)*∫ x dx
∫ x * ln(x) dx= (x²/2) * ln(x)- (1/2)*x²/2 + c
∫ x * ln(x) dx= (x²/2) * ln(x)- (1/4)*x²+ c
c)
∫ x² * ln(x) dx
u=ln(x) ==> du=dx/x
dv=x² dx ==>∫ dv=∫x² dx ==>v= x³/3
∫ x² * ln(x) dx = ln(x) * x³/3 - ∫ x³/3 * dx/x
∫ x² * ln(x) dx = ln(x) * x³/3 -(1/3)* ∫ x² * dx
∫ x² * ln(x) dx = ln(x) * x³/3 -(1/3)* x³/3 + c
∫ x² * ln(x) dx = ln(x) * x³/3 -(1/9)* x³ + c
integração por partes :
[tex]\displaystyle \int \text u.\text{dv} = \text {u.v} - \int \text v\ \text{du}[/tex]
item a)
[tex]\displaystyle \int \text{x.e}^{\text x}\text{dx}= \text {u.v}-\int \text v\text{du} \\\\ \underline{\text{fa{\c c}amos}}: \\\\ \text{dv}= \text e^{\text x}\text{dx} \to \text v = \text e^{\text x} \\\\ \text u = \text x \to \text{du} = 1\text{dx}\\\\ \underline{\text{substituindo}}: \\\\ \int \text x.\text e^{\text x}\text {dx} = \text x.\text e^{\text x} - \int \text e^{\text x}.\text{dx} \\\\\\ \huge\boxed{\int \text{x.e}^{\text x}\text{dx} = \text x.\text{e}^{\text x}-\text e^{\text x}+\text C\ }[/tex]
item b)
[tex]\displaystyle \int \text x.\text{ln x}\ {\text{dx}} = \int \text{u.dv} = \text{u.v}-\int \text{v.du} \\\\ \underline{\text{fa{\c c}amos}}: \\\\ \text {dv = x } \to \text{v}=\frac{\text x^2}{2}\text{ \dx}\\\\ \text{u = ln x} \to \text{du }=\frac{1}{\text x}\text{dx} \\\\\underline{\text{substituindo}}: \\\\ \int\text{x.ln x dx} = \frac{\text x^2.\text{ln x}}{2} - \int \frac{\text x^2}{2}.\frac{1}{\text x}\text{dx}[/tex]
[tex]\displaystyle \int\text{x.ln x dx} = \frac{\text x^2.\text{ln x}}{2} - \int \frac{\text x}{2}\text{dx} \\\\\\ \huge\boxed{\int\text{x.ln x dx} = \frac{\text x^2.\text{ln x}}{2} - \frac{\text x^2}{4}+\text C}\checkmark[/tex]
item c)
[tex]\displaystyle \int \text x.\text{ln x}\ {\text{dx}} = \int \text{u.dv} = \text{u.v}-\int \text{v.du} \\\\ \underline{\text{fa{\c c}amos}}: \\\\ \text {dv = x }^2 \to \text{v}=\frac{\text x^3}{3}\text{ \dx}\\\\ \text{u = ln x} \to \text{du }=\frac{1}{\text x}\text{dx} \\\\\underline{\text{substituindo}}: \\\\ \int\text{x}^2\text{ln x dx} = \frac{\text x^3.\text{ln x}}{3} - \int \frac{\text x^3}{3}.\frac{1}{\text x}\text{dx}[/tex]
[tex]\displaystyle \int\text{x.ln x dx} = \frac{\text x^3.\text{ln x}}{3} - \int \frac{\text x^2}{3}\text{dx} \\\\\\ \huge\boxed{\int\text{x.ln x dx} = \frac{\text x^3.\text{ln x}}{3} - \frac{\text x^3}{9}+\text C}\checkmark[/tex]