Resposta :
[tex]\large \boxed{\boxed{{\tt =cos \left(40^{\circ \:}\right) }}}[/tex]
_________________________
[tex]\sf cos \left(400^{\circ \:}\right)\\\\\\\sf \displaystyle cos \left(400^{\circ \:}\right)=cos \left(\frac{18+2}{9}180^{\circ \:}\right)=cos \left(\left(\frac{18}{9}+\frac{2}{9}\right)180^{\circ \:}\right)=cos \left(360^{\circ \:}+\frac{2}{9}180^{\circ \:}\right)\\\\\\\sf =cos \left(360^{\circ \:}+\frac{2}{9}180^{\circ \:}\right)\\\\\\\sf {Utilize\:a\:periodicidade\:de\:}cos :\quad cos \left(x+360^{\circ \:}\cdot \:k\right)=cos \left(x\right)\\[/tex]
[tex]\sf \displaystyle cos \left(360^{\circ \:}+\frac{2}{9}180^{\circ \:}\right)=cos \left(\frac{2}{9}180^{\circ \:}\right)\\\\\\\\\sf =cos \left(\frac{2}{9}180^{\circ \:}\right)\\\\\\\\\large \to \boxed{\boxed{{\tt =cos \left(40^{\circ \:}\right) }}}[/tex]
[tex]\tt Alterna\to A)[/tex]