Resposta :
Essa questão trabalha uma função exponencial, iremos fazer o seguinte, substituir o valor de t pelo primeiro valor de tempo dado (20 min) e o número de pessoas infectadas (P(1/3) = 10.000), assim, descobriremos o valor de k, como é uma constante, seu valor não muda. Em um segundo passo, substituiremos t por 2 horas e k pelo valor já descoberto, para assim, descobrir P(2).
[tex]\bf{20\;min=\dfrac{1}{3}\;h}\\\\\\\bf{P(t)=250k^{3t}}\\\\\bf{10.000=250k\;^{3\cdot\frac{1}{3}}}\\\\\bf{\dfrac{10.000}{250}=k}\\\\\bf{k=40}[/tex]
Sendo assim, o número de pessoas infectadas pelo vírus após 2 horas é de:
[tex]\bf{P(2)=250\cdot40^{3\cdot2}}\\\\\bf{P(2)=250\cdot40^6}\\\\\bf{P(2)=250\cdot4.096.000.000}\\\\\bf{P(2)=1.024.000.000.000}\\\\\bf{P(2)=1,024\cdot10^{12}\;pessoas}[/tex]
- Saiba mais em:
https://brainly.com.br/tarefa/22737192
https://brainly.com.br/tarefa/26515913
Espero ter ajudado.
Bons estudos! :)
![Ver imagem JOSÉSALATIEL](https://pt-static.z-dn.net/files/d0e/3ad0fee64774ae5146f0ca893cc231d6.png)